206 research outputs found

    A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation

    Get PDF
    Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self- assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered beta-sheets as their size increases

    Increasing understanding of the relationship between geographic access and gendered decision-making power for treatment-seeking for febrile children in the Chikwawa district of Malawi

    Get PDF
    Background: This study used qualitative methods to investigate the relationship between geographic access and gendered intra-household hierarchies and how these influence treatment-seeking decision-making for childhood fever within the Chikwawa district of Malawi. Previous cross-sectional survey findings in the district indicated that distance from facility and associated costs are important determinants of health facility attendance in the district. This paper uses qualitative data to add depth of understanding to these findings by exploring the relationship between distance from services, anticipated costs and cultural norms of intra-household decision-making, and to identify potential intervention opportunities to reduce challenges experienced by those in remote locations. Qualitative data collection included 12 focus group discussions and 22 critical incident interviews conducted in the local language, with primary caregivers of children who had recently experienced a febrile episode. Results: Low geographic accessibility to facilities inhibited care-seeking, sometimes by extending the ‘assessment period’ for a child’s illness episode, and led to delays in seeking formal treatment, particularly when the illness occurred at night. Although carers attempted to avoid incurring costs, cash was often needed for transport and food. Whilst in all communities fathers were normatively responsible for treatment costs, mothers generally had greater access to and control over resources and autonomy in decision-making in the matrilineal and matrilocal communities in the central part of the district, which were also closer to formal facilities. Conclusions: This study illustrates the complex interplay between geographic access and gender dynamics in shaping decisions on whether and when formal treatment is sought for febrile children in Chikwawa District. Geographic marginality and cultural norms intersect in remote areas both to increase the logistical and anticipated financial barriers to utilising services and to reduce caretakers’ autonomy to act quickly once they recognize the need for formal care. Health education campaigns should be based within communities, engaging all involved in treatment-seeking decision-making, including men and grandmothers, and should aim to promote the ability of junior women to influence the treatment-seeking process. Both mothers’ financial autonomy and fathers financial contributions are important to enable timely access to effective healthcare for children with malaria

    Effects of the Template Composition and Coating on the Photoluminescence Properties of ZnS:Mn Nanoparticles

    Get PDF
    Mn-doped ZnS nanocrystals based on low dopant concentrations (0–2%) and coated with a shell of Zn(OH)2 have been prepared via soft template and precipitation reaction. The results indicate that the ZnS:Mn nanocrystal is cubic zinc blende structure and its diameter is 3.02 nm as demonstrated by XRD. Measured by TEM, the morphology of nanocrystals is a spherical shape, and their particle size (3–5 nm) is similar to that of XRD results. Photoluminescence spectra under ultraviolet region shows that the volume ratio of alcohol to water in the template has a great effect on the luminescence properties of ZnS:Mn particles. Compared with unpassivated ZnS:Mn nanocrystals, ZnS:Mn/Zn(OH)2 core/shell nanocrystal exhibits much improved luminescence and higher absolute quantum efficiency. Meanwhile, we simply explore the formation mechanism of ZnS:Mn nanocrystals in alcohol and water system and analyze the reason why alcohol and water cluster structures can affect the luminescent properties of nanoparticle

    A single-electron transistor made from a cadmium selenide nanocrystal

    Full text link
    The techniques of colloidal chemistry permit the routine creation of semiconductor nanocrystals, whose dimensions are much smaller than those that can be realized using lithographic techniques. The sizes of such nanocrystals can be varied systematically to study quantum size effects or to make novel electronic or optical materials with tailored properties. Preliminary studies of both the electrical and optical properties of individual nanocrystals have been performed recently. These studies show clearly that a single excess charge on a nanocrystal can markedly influence its properties. Here we present measurements of electrical transport in a single-electron transistor made from a colloidal nanocrystal of cadmium selenide. This device structure enables the number of charge carriers on the nanocrystal to be tuned directly, and so permits the measurement of the energy required for adding successive charge carriers. Such measurements are invaluable in understanding the energy-level spectra of small electronic systems, as has been shown by similar studies of lithographically patterned quantum dots and small metallic grains.Comment: 3 pages, PDF forma

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Synthetic biology in society: learning from past experience?

    Get PDF
    Drawing an analogy to past debates over biotechnology, some stakeholders fear that synthetic biology (SB) could raise public concerns. Accordingly, ‘lessons from the past’ should be applied to avoid controversies. However, biotechnology in the 1990s is not the only possible comparator. The potential to become contested has been attributed to a number of other novel technologies. Looking at nanotechnology for example, controversies have not materialised to the extent predicted. The article discusses factors relevant for controversies over technologies as well as differences to the situation when modern biotechnology began to proliferate. Certain properties attributed to SB in the discussion so far indeed suggest a potential for controversies of its own, but perceptions may follow those on other aspects of biotechnology subject to local contingencies. Finally, it is questioned whether ELSI research should see its task in applying lessons from the past to ease technology introduction. Today, rather than seeing themselves being embedded in a linear model of technology development, social scientists take an interest in developments ‘upstream’ where technologies take shape

    On-chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultra-high-Q Microresonator

    Full text link
    The ability to detect and size individual nanoparticles with high resolution is crucial to understanding behaviours of single particles and effectively using their strong size-dependent properties to develop innovative products. We report real-time, in-situ detection and sizing of single nanoparticles, down to 30 nm in radius, using mode-splitting in a monolithic ultra-high-Q whispering-gallery-mode (WGM) microtoroid resonator. Particle binding splits a WGM into two spectrally shifted resonance modes, forming a self-referenced detection scheme. This technique provides superior noise suppression and enables extracting accurate size information in a single-shot measurement. Our method requires neither labelling of the particles nor apriori information on their presence in the medium, providing an effective platform to study nanoparticles at single particle resolution.Comment: 23 pages, 8 figure

    Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2

    Get PDF
    We report pronounced enhancement of photoelectrochemical hydrogen generation of a quantum dot-sensitized hybrid-TiO2 (QD/H-TiO2) electrode that is composed of a mesoporous TiO2 layer sandwiched by a double sided energy harvesting layer consisting of a surface-textured TiO2 inverse opals layer on the bottom and a patterned mesoporous TiO2 layer on the top. CdSe/H-TiO2 exhibits a maximum photocurrent density of similar to 16.2 mA/cm(2), which is 35% higher than that of the optimized control sample (CdSe/P25), achieved by matching of the bandgap of quantum dot-sensitization with the wavelength where light harvesting of H-TiO2 is observed. Furthermore, CdSe/H-TiO2 under filtered exposure conditions recorded current density of similar to 14.2 mA/cm(2), the greatest value in the visible range. The excellent performance of the quantum dot-sensitized H-TiO2 suggests that alteration of the photoelectrodes to suitable nanostructures with excellent light absorption may offer optimal strategies for attaining maximum efficiency in a variety of photoconversion systems.open3

    A Novel Mouse Fgfr2 Mutant, Hobbyhorse (hob), Exhibits Complete XY Gonadal Sex Reversal

    Get PDF
    The secreted molecule fibroblast growth factor 9 (FGF9) plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob), which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser) in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6) genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected

    Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand

    Get PDF
    Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs) in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL) efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM) of PL (26 nm). Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.%) of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585) was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26–31 nm) and high QY of PL (35–55%)
    corecore